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a b s t r a c t

Detailed models of UO2+x at very high temperatures incorporating the effects of non-congruent melting
have been developed to support the design and analysis of experimental work related to nuclear safety.
Models based on both the Stefan formulation and phase field approach are implemented using recently
published material properties. Simulations compare well with laser flash experiments performed on
UO2+x. This work has application in modelling centreline melting of defective fuel which may occur
due to the reduced thermal conductivity and lower incipient melting temperature associated with fuel
oxidation.
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1. Introduction

In the event of upset or very high power conditions, it is possi-
ble that the temperature at the centreline of a fuel pellet will ex-
ceed the local melting point and begin to melt. This possibility is
enhanced if the fuel element has become defective, in which case
the coolant is allowed to contact the UO2, oxidizing it to UO2+x.
Hyperstoichiometric fuel has a reduced thermal conductivity and
a lower incipient melting point, thus reducing the margin of safety
preventing the formation of molten fuel.

The thermal and mechanical implications of molten fuel under
upset or severe reactor accident conditions have been previously
modelled on a large scale for the purpose of reactor safety [1–5].
Detailed simulations have been conducted for defective fuel ele-
ments under normal operating conditions [6–8], however, these
simulations do not cover the possibility of a molten phase. Thus
a treatment is need for these conditions.

Laser flash experiments have been performed recently at the
Institute for Transuranium Elements in order to better understand
the thermal properties of UO2 at high temperatures in both the so-
lid and liquid states. In particular, the precise placement of the sol-
idus and liquidus lines are of interest in order to predict the onset
of centreline melting [9,10]. In order to determine such properties,
sophisticated models coupling the heat and mass transport are
typically needed [11].

This work therefore details the parallel development of two
modelling techniques, the Stefan formulation and the Phase Field
model, towards the analysis of experimentation involving non-
008 Published by Elsevier B.V. All
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congruent phase change and to later be developed to simulate fuel
centreline melting in operational nuclear fuel. The parallel devel-
opment of two types of models allows for a check of consistency
between the different techniques, which encourages confidence
in the simulation implementation and focuses attention on the
material properties at very high temperatures and the phase dia-
gram. This model builds on the stoichiometric model presented
in [12].

2. Modelling technique

Through experiments in self-diffusion, it was discovered that
the mobility of oxygen atoms is much larger than that of uranium
[13]. Therefore, UO2+x is modelled as an immobile UO2 lattice with
a mobile species of interstitial oxygen atoms, the ratio of the later
to the former being represented by x. The inclusion of the thermo-
dynamic functions involves the integration of the thermodynamics
and kinetics of the system on a fundamental level.

Local equilibrium is assumed at the interface at all times in
accordance with the phase diagram in Fig. 1. Modifications to this
phase diagram have been proposed [9,14], however, the thermody-
namic model presented in [6], which produces the phase diagram
in Fig. 1, is retained at this point for the purpose of consistency
with previous work.

Both the Stefan and the Phase Field model rely on the formula-
tion of the heat and mass fluxes. Derivation of these fluxes is
accomplished through the Theory of Irreversible Processes (Non-
equilibrium Thermodynamics) [15] which provides the fundamen-
tal interrelation of the evolution of the thermodynamic state
variables with the thermodynamics of the system including the
Soret effect [16], the Dufour effect [17], the chemical diffusion
coefficient, and phase stability.
rights reserved.
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Fig. 1. Computed U–O binary phase diagram at 1 atm from reference [6], showing
fit temperature and partition coefficient functions used as inputs to the model.

Fig. 2. Schematic diagram of the Stefan formulation applied to a coexisting solid
and liquid phase, with a phase boundary indicated by the separating line.
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Due to the small thermal expansion of condensed phases, the
volume is assumed to be constant as an approximation. Therefore,
in order to conserve mass, the density is treated as a constant. The
approximation of constant volume also implies that the thermody-
namic functions of internal energy and enthalpy (and therefore the
Helmholtz and Gibbs energy) are equal.

2.1. Mass and heat fluxes

The transport of heat and mass is able to be derived through the
Theory of Irreversible Processes as described in Appendix A.
Through this formulation, it is concluded that in order for the en-
tropy of a system to increase as a result of irreversible processes,
the heat and mass flux must obey the following inequality:

� 1
T2rT �~q� 1

T
rlT �~Jo P 0; ð1Þ

where T is the temperature, q is the conductive heat flux, l is the
chemical potential of interstitial oxygen and Jo is the flux of intersti-
tial oxygen. The subscript T beside l indicates that the gradient is
taken at constant temperature. This inequality may be assured by
introducing linear phenomenological laws relating all thermody-
namic state variables to the thermodynamic driving forces:

~q
~Jo

" #
¼

Mqq Mqo

Moq Moo

� �
�rT=T2

�rlT=T

" #
; ð2Þ

where the matrix is positive definite. The elements of this matrix
are the ‘mobilities’ which describe a linear relationship between
the state variables and the thermodynamic driving forces. Although
linearity can only be guaranteed close to equilibrium, linear laws
have historically worked well and so this assumption is assumed
to be valid for all times [15]. The elements Mqq and Moo are related
to the thermal conductivity, k ¼ Mqq=T2, and the self diffusion coef-
ficient of the interstitial oxygen, D ¼ Mookb=Co where kb is the Boltz-
mann’s constant and Co is the concentration of interstitial oxygen
atoms. Defining the flux in this way reconciles this development
with the expression used by Lay [18] and the diffusion driving force
of Darken [19]. The ‘cross-terms’ Mqo and Moq are related to the Sor-
et (thermodiffusion) and Dufour effects. In accordance with the
Onsager reciprocal relationship, Mqo and Moq are equal in magni-
tude. In this particular application, there are large temperature gra-
dients present but not comparably large concentration gradients.
Therefore, as a simplification, the Dufour term can be neglected.
This system may be simplified through the heat of transport, Q* de-
fined as [20]:

Moq ¼ MooQ �; ð3Þ
which simplifies the flux expressions to the more traditional form:

~q ¼ �k~rT; ð4Þ

~Jo ¼ �
DCo

kbT
rlT þ

Q �

T
rT

� �
: ð5Þ
2.2. Stefan formulation

The Stefan formulation is based on conservation of heat and
mass flux across a moving phase change front. In the implementa-
tion for this work, the moving domain is transformed onto a sta-
tionary domain for computation via the Arbitrary Lagrange
Eulerian method [21].

Fig. 2 shows the basic schematic of a two phase Stefan problem,
defining the normal direction n̂ and the rate of melting Rfus in
accordance with the convention in [22]. Solid and liquid properties
are denoted by subscripts S and L, respectively. The temperature
profile in the sample is continuous across the boundary; however,
a discontinuity in the heat flux, corresponding to absorption of la-
tent heat, is present in the case of movement of the phase bound-
ary. The oxygen profile is discontinuous at the boundary if the
sample is hyperstoichiometric, the equilibrium concentrations in
coexisting phases being given by the solidus and liquidus compo-
sitions at the local temperature.

The molar concentration of UO2 is represented by C, assumed in
the dilute limit to remain constant regardless of the interstitial
oxygen mole fraction. Therefore, the mole fraction of interstitial
oxygen to UO2 is given by x = Co/C.

Heat and mass balance must be satisfied in both the liquid and
solid phases independently. Using the fluxes defined in Eqs. (4) and
(5), this implies for both phases:

qCP
@T
@t
¼ ~r � ðkrTÞ; ð6Þ

@Co

@t
¼ r!� DCo

kbT
rlT þ

Q �

T
rT

� �
; ð7Þ

where q is the density and Cp is the heat capacity at constant
pressure.

The gradient of the chemical potential (at constant tempera-
ture) may be expanded and converted into the expression used
by Sari and Schumacher [23]:

C @x
@t ¼ r
! � DCo

kT
@l
@x ðrxþ Q�

@l=@x�TrTÞ

¼ Cr!� ~Dðrxþ x
1þð@ ln c=@ ln xÞ

Q�

RT2rTÞ;
ð8Þ

where ~D is the chemical diffusion coefficient of interstitial oxygen, c
is the activity coefficient, and R is the ideal gas constant.
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The rate of fusion, corresponding to the rate of movement of the
interface in Fig. 2, may be determined by a mass/energy balance
across this interface. Using normal fluxes indicated by a subscript
n̂, the balanced equations may be written:

q!Ln̂ � q!Sn̂ ¼ qDHfusRfus; ð9Þ

J
!

Ln̂ � J
!

Sn̂ ¼ CðxL � xSÞRfus; ð10Þ

where Hfus is the enthalpy of fusion, Rfus is the rate of fusion (melt-
ing), and xL and xS are the liquidus and solidus compositions.

2.3. Phase Field model

The Phase Field model introduces a variable u into the expres-
sions for the thermodynamic functions to represent the local
phase. It is converted to a volume fraction through a function
p(u). As u varies continuously between 0 (solid) and 1 (liquid), a
two phase ‘mushy zone’ is encountered in contrast to the sharp
interface used in the Stefan formulation described above. Material
properties between phases are expressed as a linear function of
progression of p(u). The demarcation between solid and liquid
may be deduced from the solution as the contour of u = 0.5.

As derived in Appendix A, the Phase Field model requires the
solution of the following set of partial differential equations:

qCP
@T
@t
¼ �~r �~q� @h

@u
@u
@t

; ð11Þ

where h is the enthalpy density.
The flux of oxygen is derived in a similar manner to Eq. (8) ex-

cept, since the chemical potential is also a function of u, the flux is
derived including a term dependent on the gradient in u. This term
acts to maintain the solubility gap across the interface, and van-
ishes when the chemical potential is equal in both phases in accor-
dance with phase equilibrium theory.

C
@x
@t
¼ Cr!� ~D rxþ 1

@l=@x
Q �

T
rT þ @l=@u

@l=@x
ru

� �
: ð12Þ

Finally, as shown in Appendix A, the following differential
equation must be solved in order to determine the rate of phase
change:

@u
@t
¼ �Mu

T
@g
@u
� l @x

@u
� Te2

u
~r2u

� �
þ _un; ð13Þ

where _un is the rate of nucleation, Mu is the mobility of u, eu is a
parameter which controls the width of the interface, and g is the
Gibbs energy density.

These equations can be seen to differ from those of the Stefan
formulation by the addition of the variable u, its rate of change
and gradient, which account for the phase, latent heat liberation
and the solubility gap between phases. The Stefan model accounts
for these effects via the movement of the phase boundary. From
inspection of Eq. (13), it can be seen that the rate of change of u,
is governed by a free energy minimization. In fact all three of the
presented equations are derived from the principle of entropy
maximization. A detailed explanation and derivation of _un, Mu,
eu and other phase field parameters are given in [12].

3. Laser flash experiments

The current model is being validated against laser flash experi-
ments conducted at the Institute for Transuranium Elements
[9,24]. These experiments are designed to measure the melting
transition in UO2+x, but also include data that are useful for the cur-
rent model validation. In these experiments, a prepared sample of
UO2+x is held in a high pressure helium buffer gas in order to sup-
press vaporization of the sample. The sample is heated on one side
with a high intensity laser beam until melting occurs. The intensity
of the beam is then reduced to a lower level which prevents und-
ercooling effects. The surface temperature of the sample is re-
corded as a function of time by optical pyrometry and is the
main resulting data collected from the experiment.

The laser is assumed to deposit energy uniformly (within the la-
ser spot) in accordance with the expression:

qlaser ¼ e � PmaxPpulseðtÞ; ð14Þ

where Ppulse(t) is the laser power profile, Pmax is the maximum
power of the laser beam and e is the emissivity which, through Kir-
chhoff’s radiation law [25], is assumed to be equal to the
absorbtivity.

Heat is lost from the surface of the sample with heat transfer
through the buffer gas, radiative heat transfer and vaporization.
Heat transfer in the buffer gas is modeled simultaneously to ac-
count for heat lost from the sample. The other terms are accounted
for by the equation:

qloss ¼ erSBðT4 � T4
1Þ þ Hvap � Jeff ; ð15Þ

where T1 is the ambient temperature, rSB is the Stefan Boltzmann’s
constant, Hvap is the molar enthalpy of vaporization. The term Jeff is
the rate of molecular vapourization assumed to be small enough so
as not to constitute a mass loss, but rather only a loss of heat.

Jeff ¼ Ceff
44:3ffiffiffiffiffi

M
p � Pvapffiffiffi

T
p

� �
; ð16Þ

where Pvap(T) is the vapour pressure [26] and M is the molar mass of
the vapour species. Eq. (15) is the Knudsen effusion formula [27]
which is designed for effusion into a vacuum and is used as a sim-
plification of the vapourization process. To correct this for the pres-
ence of the buffer gas, this formula includes a constant fraction Ceff

selected to reproduce the observed temperature profile.

4. Material properties

The Fink review [28] is taken as the primary source of the mate-
rial properties, some of which must be extrapolated well beyond
their quoted temperature range. Extrapolation of solid properties
to the melting temperature is further complicated by the presence
of the k-transition at approximately 2670 K which may also affect
the temperature dependence of the material properties. Of specific
concern is the chemical diffusion coefficient of interstitial oxygen
near the melting temperature in the solid and liquid phases.

The expression for the chemical diffusion coefficient in the solid
is given as [13,29]:

~D ¼ 2:5 � expð�16 400=TÞ cm2=s; ð17Þ

which is calculated from the oxygen self-diffusion coefficient of
interstitial oxygen through application of the thermodynamic factor
described earlier. This expression is presented as invariant with the
oxygen concentration by virtue of the fact that the thermodynamic
factor varies as 1/x whereas the self-diffusion coefficient varies
approximately with x. The presence of the k-transition and associ-
ated effects may affect this value at temperatures about 2670 K
with molecular dynamics simulations [30] predicting an increase
in the self-diffusion coefficient.

The liquid diffusion coefficient is also not well known, requiring
the use of the Stokes–Einstein theory with oxygen atom diffusing
through a viscous solvent of UO2. Unfortunately, using the viscosity
recommended by Fink, this yields a diffusion coefficient for oxygen
in the liquid urania that is lower than that of the solid. As this is not
typical, a more reasonable estimate is to use the value of the diffu-
sion coefficient in the solid at the melting temperature.
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5. Results

At present, the hyperstoichiometric model has only been solved
for small deviations from stoichiometry in one dimension, consid-
ering the depth into the sample in the middle of the laser beam/
molten pool. Radial symmetry about this axis is supported by the
fact that the simulated depth of the molten pool is small compared
to the radius of the laser beam. Radial effects have also been shown
to be negligible in simulations of the stoichiometric case [12].

Figs. 3 and 4 assume that the diffusion coefficient in the solid is
valid through the k-transition up to the melting point. The liquid
diffusion coefficient is assumed to be the same as that of the solid
at the melting point.

It can be seen that there is a high level of agreement between
the Stefan and Phase Field model both in terms of the surface tem-
perature and stoichiometry profile. Both simulations reproduce the
observed experimental results well but depart slightly from the
observations at the end of the solidification region.

The simulation was repeated where the value of the solid (and
therefore liquid) diffusion coefficient was held at 2670 K, the high-
est temperature to which Eq. (17) can reasonably be extrapolated.
This simulation therefore provides the smallest diffusion coeffi-
cient that would be expected for both the liquid and solid phase.
The resulting profile of surface oxygen vs. time was altered slightly,
as would be expected, but the change on the temperature profile
was negligible thereby indicating a small sensitivity to the diffu-
sion coefficient on the model.

The sensitivity of the simulation to the thermal conductivity
and density is thought to be the same as for the stoichiometric case
Fig. 3. Surface temperature and oxygen concentration results for UO2.01.

Fig. 4. Surface temperature and oxygen concentration results for UO2.03.
investigated in [12]. In this case, the model is shown to be slightly
sensitive to the thermal conductivity in the liquid, which has large
uncertainty quoted in the literature. The model is further shown to
be insensitive to changes in the chosen density.
6. Discussion

The close correspondence between model predictions indicate
that the both the Stefan and Phase Field models are sound. The
models predict the observed temperature well, although improve-
ments are possible to better reproduce the complex solidification
process. It can be noted that apart from the solidification region,
the thermogram is well reproduced, indicating a good choice of
boundary conditions.

Computationally, the Stefan model is less memory intensive
and computes faster due to the implementation on the moving
mesh. The Phase Field model requires a high degree of resolution
over the entire domain of interest in order to adequately resolve
the thin interface which significantly increases the computational
requirements for the solution of the model. The Phase Field model
can however be easily generalized to the two dimensional case due
to its robust treatment for the interface geometries. The Stefan for-
mulation suffers in this regard as the creation of an interface (as
opposed to the movement of an interface described herein) poses
a challenge that is further compounded by two dimensional
effects.

Investigation of the sensitivity of the model to the diffusion
coefficient shows a lack of sensitivity in the liquid region. This
can be interpreted as implying that the diffusion coefficient in
the liquid is very fast compared to the size of the liquid region,
and so is capable of maintaining essentially steady state diffusion
even at the lowest justified value. The sensitivity to the diffusion
coefficient in the solid is slightly larger as it applies to a larger do-
main. The main factors affecting oxygen transport is therefore sol-
ute redistribution as a result of the phase change. This depends on
the chosen phase diagram, which was not varied in the current
analysis.

Although a slight modification of the phase diagram to better
reproduce the experimental results can be considered, the change
still does not fully reproduce all observations. As such, it is possible
that radial effects must be considered in the simulation as the mol-
ten pool solidifies radially towards the centre of the pool as ob-
served in the current experiments. These radial effects would
enhance the solute redistribution and is the subject of further
investigation. The assumptions in the derivation of the model
may also lead to inaccurate prediction. Notably, the assumption
of local equilibrium at the interface may not be completely correct
if the solidification rate is sufficiently high and diffusion cannot
reestablish the solubility gap between phases fast enough. This
leads to the phenomenon of solute trapping, although this seems
unlikely due to the high diffusion rates as previously discussed.
The assumptions of a linear phenomenological law may also be
questionable at such large temperature gradients and short times.
Nonlinear laws are possible to implement, but are outside of the
scope of the current work although the current treatment shows
reasonable agreement with the experimental results.
7. Conclusions

The presented models show that both the Stefan and Phase
Field models are mutually consistent and agree fairly well with
the observations from laser flash experiments on slightly hypersto-
ichiometric UO2+x. The models are derived from first principles in a
method that is consistent with equilibrium thermodynamics,
providing a strong connection between the evolution of the state
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variables and their equilibrium values. The sensitivity of the mod-
els to uncertainty in the material properties is judged to be small.

These sophisticated models may now be used in order to assess
the effects of simplifications particularly used in other codes to
simulate molten fuel behaviour during severe fuel damage condi-
tions where typically just the heat capacity is modified to represent
the effect of molten material on the temperature predictions. The
Phase Field model in particular lends itself well to the simulation
of centreline melting of operational nuclear fuel, which is a focus
of further development
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Appendix A. The Theory of Irreversible Processes

The theory of irreversible processes is based on the conserva-
tion of internal energy and mass, and the requirement of positive
entropy production for a real system that is not in equilibrium.

Assuming local equilibrium to exist in the case of a two-phase
region, the local state can be written as a function of the internal
energy u, the overall composition of interstitial oxygen x and the
phase u. The liquidus and solidus compositions are determined
by the relations ð1� pð/ÞÞxs þ pð/ÞxL ¼ x and xs ¼ xLkp where kp

is the partition coefficient. It is then possible to show that for a cer-
tain choice of the entropy functional, the rate of entropy produc-
tion is given by the expression [31]:

sprod ¼ ~r @s
@u
�~Ju þ ~r @s

@x
�
~Jo

C
þ @s

@u
þ e2

u
~r2u

� �
@u
@t

; ð18Þ

where s ¼ sðu; x;/Þ is the entropy density expressed as a function of
the internal energy u ¼ uðT; x;/Þ, x and u. The internal energy flux is
represented by~Ju and the molar flux of interstitial oxygen by~Jo. The
constant eu is strictly related to the interface tension and provides
an energy penalty for regions of sharply changing u and so helps
control the width of the interface.

In the current implementation, volumetric expansion is ne-
glected and so the density is assume to be constant for all temper-
atures and phases. Neglecting nuclear reactions, the laws of
conservation of energy and mass are:

@u=@t ¼ �~r �~Ju; ð19Þ
@Co=@t ¼ �~r �~Jo; ð20Þ

where Co is the concentration of interstitial oxygen atoms.
The derivatives of entropy with respect to the state variables

may be derived as:

@s
@u
¼ 1

T
; ð21Þ

@s
@x
¼ �1

T
@gðT; x;uÞ

@x
¼ �1

T
ClðT; x;uÞ; ð22Þ

@s
@u
¼ �1

T
@gðT; x;uÞ

@u
� Cl @x

@u

� �
; ð23Þ

where l is the chemical potential of interstitial oxygen.
Entropy production, as given in Eq. (18), can be divided via Cur-

rie’s law into inequalities for the vector components (fluxes) and
the evolution of the scalar phase field. Separately, they must both
be non-negative:

~r1
T
�~Ju � ~rl

T
�~Jo P 0; ð24Þ

� 1
T
@gðT; x;uÞ

@u
� Cl @x

@u
� Te2

u
~r2u

� �
� @u
@t

P 0: ð25Þ

Through the use of the thermodynamic relation:

@ðl=TÞ
@ð1=TÞ ¼

@h
@Co

; ð26Þ

where h is the enthalpy density, and recognizing the internal energy
flux to be the sum of conductive heat flux and the heat flux resulting
from solute movement: ~q ¼~Ju � @h=@Co �~Jo, Eq. (24) can be rewrit-
ten in its simplest form:

�
~rT

T2 �~q�
~rlT

T
�~Jo P 0; ð27Þ

where ~rlT indicates that the differential is to be taken at constant
T. Eq. (24) yields an expression for the rate of change of u:

_u ¼ �Mu

T
@gðT; x;uÞ

@u
� Cl @x

@u
� Te2

u
~r2u

� �
: ð28Þ

In order to recover the classical heat transport equation, Eq. (19)
can be written:

@h
@t ffi @u

@t ¼ �~r �~Ju;

qCp _T þ @h
@x

_xþ @h
@u

_u ¼ �~r �~q� ~r � @h
@Co
~Jo;

qCp _T ¼ �~r �~q� @h
@u

_u;

ð29Þ

where the definition @h=@T ¼ qCp has been used and the gradient of
the molar enthalpy is assumed to be negligible due to small
concentrations.
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